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Existence, decay and blow up of
solutions for a Petrovsky equation
with a fractional time delay term
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ABSTRACT. In this paper, we consider a Petrovsky equation with frac-
tional time delay term in a bounded domain. Firstly, we prove the
existence of solutions using the semigroup theory. Later, we establish
the decay of solutions. Finally, we obtain the blow up of the solutions.

1. INTRODUCTION

In this paper, we study the following Petrovsky equation with a fractional
time delay term

ug + A%u + 0y ) o u(t — 1) + aguy = |u|? 2u, z€Q, t>0;
W u(z,t) = a%u(x,t) =0, x €00, t>0;

u(x,0) =up(z), u(z,0)=ui(x), x €

u(x, t — 1) = folz,t —7), xeQ, te(0,7);

where 2 is a bounded domain of R™, with a smooth boundary 9, v is the
unit outer normal to 0f2. «a; and as are positive real numbers such that
a1 ! < ay. The constants ¢ > 2 and 7 > 0 is the time delay. Also,
(up,u1, fo) the initial data belong to an appropriate function space. The
notation 9;" # stands for the generalized Caputo’s fractional derivative (see
[4,/5,20]) defined by the following formula

t
! ) / (t—7) e Py (r)dr, 0<a<l, B>0.
0

o ult) = (1-a
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— The fourth-order equation has its origin in the canonical model in-
troduced by Petrovsky [21},22]. This type of equations arises in many
branches in sciences such as acoustics, optics, geophysics and ocean
acoustics [6].

— Time delay appears in many practical problems such as economic,
thermal, biological, physical, chemical phenomena and it can be a
source of instability [11].

— Fractional derivatives and integrals arise naturally in physics, biol-
ogy, chemistry, ecology (see [15.]20,23]).

The decay phenomena commonly arise in solutions to the evolution equa-
tions of various types. Understanding the conditions under which such phe-
nomena occur is of practical interest. There are several methods to show
the decay of solutions. A recent comprehensive overview of these methods
can be found in the monograph by Pigkin |18] and Straughan [24]. The blow
up phenomena commonly arise in solutions to the evolution equations of
various types. Understanding the conditions under which such phenomena
occur is of practical interest. However, accurately computing the precise
blow-up time is often challenging. Despite this challenge, it is still possible
to estimate the blow-up time using various methods. A recent comprehen-
sive overview of these methods can be found in the monograph by Al’shin
et al. [1], Hu [§] and Pigkin [17].

Kirane and Tatar [13] considered the following equation

uy — Au + 9w = [ulP~? .

They demonstrated the exponential growth for a fractionally damped wave
equation.
Aounallah et al. 2] studied the following wave equation

Uy — Au + 0410taﬂu (t—7)+ agup = |u|p_2 u.

They established the well-posedness, blow-up and asymptotic behaviour for
a wave equation with a time delay condition of fractional type.
Pigkin and Uysal [19] studied the following equations

uge 4+ A%u 4 01 = JulP .

They proved the blow-up of solution.
Nicaise and Pignotti [10] considered as follows

ug — Au+ aqu (t —7) + couy = f (u).

They demonstrated that the energy is exponentially stable when ao < .
Kafini and Messaoudi [12| proved the following delayed wave equation
with logarithmic source term

gy — Au+ aqu (t — 7) + aouy = [ulP 2 uln |ulf.

They investigated the local existence and blow-up of solutions.
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Georgiev and Todorova |7] studied the following equations
Wy — Au—+ auy [ug ™ = bu |ulP7h.

They considered the existence of a solution of the wave equation nonlinear
damping and source term.

Our purpose of this paper is to study the local-global existence, decay
and blow-up of solutions of the initial-boundary problem in a bounded
domain.

Our study is divided into six parts. In section 2, we give some important
lemmas. In Section 3, we obtain the well-posedness by the semigroup theory.
In Section 4, we prove the global existence results. In Section 5, we get decay
of solutions. Finally, we establish the blow- up of solutions.

2. PRELIMINARIES

In this part, we will restate problem , for which we need the following
lemma.

Lemma 1 (|9]). Set n is the function:

n(E€)=1¢"T, €eR0<a<l.
Then the relationship between the “input” U and the “output” O of the system
¢t (2,6,1) + (£ +B) ¢ (2,6t) = U (z,t)n(§) =0, E€ R, t >0, 3> 0,
¢ (z,£,0) =0,

O (t) = S [+ 6 (&, 1) n (&) d
s given by
O =18y,

here

1Py (t) = F(la) /0 t (t —7)* L e Py (1) dr.
Lemma 2 ([3]). If A € Dg = C\ (—o0, —f3) then
oo 772 (5) _ ™ a—1
[ et mam OO

The damping and delay functions are considered under the following as-
sumptions.

(2) a1 %7 < ag.

Now, we introduce, as in [10], the new variable
(3) z(z,p,t) =u (x,t—pr), €, pe(0,1), te Ry,
Then, we get

(4) Zt<$7p7t):?zp(x7pat)7 er? p€<071)7 t€R+'
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Also, by — and applying Lemma 1, we can reformulate problem as
the following system

g + A2u+bfj;°¢(a:,£,t)n(f) d¢ + aouy = |u|T%u, z€Q, t>0,

& (2, 6,8) + (€ 4 B) ¢ (2,6,1) — 2 (2, 1,1)n(§) =0, 2z€Q, EE€R, >0,

Tz (@, pyt) + 2p (x, p,t) =0, zeq, pe(0,1), t>0,
(5) u(x,t):%u(x,t):o, €0, t>0,

2 (2,0,t) = ug (x,t), z €N t>0,

u(z,0) =up (z), w (z,0) = u; (x) x €,

¢ (z,&,0) =0, reN, £ER,

z (2, p,0),= fo(z,—p7), e, pe(0,1),

here b = %al

Lemma 3. Assume that z € L* () and £¢ € L?(Q x (—o0,+00)) hold.
Then

+o00
/ 2@ pt) / n(E)6(x. £, 1) dedn
Q

—0o0

+oo
<o [ Rapfaosg [ [ @80 enf ded

for a positive constant Ayg.

Proof. Thanks to the Cauchy-Schwarz inequality, we have

‘ / () 6 (6. 1) deda

—00

([ 85 ([ @ mecona)

By using Young’s inequality, we get

+oo
/ 2 (z.p.t) / 0(€) 6 (2. €,1) déda
Q

—0o0

“+oo
<o [Le@ptfdosy [ [ @406 @enPdst

with

RS
AO/OO ey g%

This completes the proof. O
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Now, we define the energy funcional of the problem by

1 2 b e 2 1 2
2=l +3 [ [l enP dedr+ A

1 1
— Ml st [ 1z @) dpda,

q QJo
where s is a positive constant verifying
(7) bAp < s < ag — bAj.
Lemma 4. Suppose that holds and

2<qg<oo, ifn=1,2,3,4;

8
®) 2<q§%, ifn > 5.

Then, the energy functional defined by @ satisfies

aE(t) < _C’/Q <|z (z,1,1)]* + \z(w,O,t)\Q) dx

dt
b +o00
- 2/9/_00 (€ +8) I¢ (z.&,1)|" ded,

for a positive constant C.

(6)

9)

Proof. Multiply u; with the first equation of and integrating by parts
over {2, we obtain

d 1 1 1 2
o [2 e |* + 5 | Au? P ”“”Z} + ag [lull3
(10)

+o00
+b/ﬂut/_ n(€) 6 (2, €,1) dédz = 0.

Multiply b¢ with the second equation of and integrating over ) X
(—00, +00), we obtain

d [b Feo
15 [ [ oo i)

400
(1) n b/Q/_ (€ + B) |6 (. £, 1)|? dede

+o0
—b/Qz(:c,l,t)/ n (&) ¢ (x,&,t)dédx = 0.

—0oQ
Multiply 2sz with the third equation of and integrating over 2 x (0, 1),
we obtain

(12) cclit{”/g/ol |2 (z, p, t)|2dpdx}

+s/Q 2@ 10 ~ |2 (2,0.0)] dz = 0.
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By summing . and using u; = z(x,0,t), we get

dE (t
dt() a—s/|z:v0t|dx—s/]zx,1,t

b/Q/_OO (€2 + 8) 6 (. &, D) déda
+o0
—b/Qz(x,O,t)/_oo 0(€) 6 (2. €,1) dédn
+o00
+b/Qz(:c,1,t)/_ 0 (€) 6 (2, €, 1) déda.

By using Lemma 3, we have

dE (t) —C/ |2 (,1,0)* + |2 (2,0, )] )d:v

dt
+00
- 2/9/_ (€% + B) ¢ (z,&, 1) déda
with
C =min{(s — bAg), (a2 —bAg—s)}.

Given that s is selected in accordance with assumption @, the constant C'
turns out to be positive. This concludes the proof. O

3. WELL-POSEDNESS

Let us define v = u; and introduce the vector

with the initial condition specified by

Uo

ul

0
fO('v 7p7—)

We also define the nonlinear operator J(U) as

U(0) = Up =

0
Jul "™
0
0

J(U) =
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Then can be rewritten as an abstract problem
{ U+ AU=J (U (t)) ,

UO (O) == (UOa uy, 07 fO('7 _pT))T 3
where the operator A : D(A) — H is defined by

(13)

A%u+b [T ¢ (2,€,) 1 (€) dE + azv
(€ +8) ¢ (2,6) — 2 (2, 1) (€)

%ZP (l’, p)

AU = A

SIS EISEIES

with domain
UeH:ue H*Q), ve H (), z, € L2 (2 x(0,1)),
DA) = 2(.,0,.) = v, & € L?Q x (—o0, +00), ,
(6 +8) 6 — 2 (@, 1,6) 7 () € L (2 x (o0, +00))
where the space H is defined by:
H = Hj(Q) x L*(Q) x L*(Q x (—o00,+00)) x L*(Q x (0,1))
equipped with the inner product

<U, (7>H - /Q [AuAT + v da: + b/Q /_:O o(z, €)d(x, €)dedw

1
+ 257’/ / 2(x, &) z(x, &)dzdp.
QJ0
Theorem 1. Suppose that and hold. Then for any Uy € H, problem
has a local unique weak solution
U e C([O,T),’H).

Proof. Following the approach in [14, 16|, we demonstrate that the operator
A is maximal monotone and the function J is a locally Lipschitz continuous.
Initially, for every U € D(A) ,by applying inequalities and (9), we
obtain

(AU, U),, > C’/Q [ (D + |2 2,0 da

b 400
* Q/Q/OO (€ +8) 16 (2, 6)|” dda.

This inequality confirms that A is a monotone operator.

To establish maximality, we aim to show that the operator I + A is onto.
Specifically, for any given F = (f1, fo, f3, f1)7 € H, we need to find a
U = (u,v,¢,2)T € D(A) such that

(I+AU=F
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Namely,

u—v=f1(x),

(1+a2)u+ A%u+b [T ¢ (2,6)n () dé = fo(x),
¢ (,8) + (€ +B) ¢ (,8) — 2 (z, 1) (&) = f3(x,€),
2 (@, p) + 72 (2, p) = fa(z,p).

Provided that u exhibits sufficient regularity, one can deduce from the first
and third equations in that

(15) v=u-—fi

and
_ fs(@, §) + 2 (=, 1) n(§)
(16) B, &) = T T

Conversely, the fourth equation in , subject to the initial condition
z(x,0) = u — f1 admits a unique solution given by

(17) z(x,p) = (u— fi(x)) e +Te ™ /p " fa(x,0)do, z € Q,p € (0,1).
0

Substituting in the second equation of , we have

(14)

r€Q, £€R.

—+00

(18) (1+az)u+A’u+b ¢(2,&)n(€)dE = fa(x) + (1 + az) fi(x).

Solving equation is equivalent to finding u € H?(Q) such that

+oo
a2) U 2ul wdz w x .
(19) /Q[(1+ 2)u+ A } d —i—b/Q /oo o(z, E)n(€)ded

=LUM@+O+%NHMwM7w€HMm-

By using , and , we get
[ s 8%y w = [ (fata) + i) wio

(20) —b/ /+OO §2+6+1)d§d

bTeTA1/w/ €’ fy (x,0) dodzx, wEH&(Q),
o Jo
here

—14as+be A >0, A :/M”Q@dg
H 2 1 ) 1 L 441

As a result, problem is equivalent to the problem
(21) B(u, w) = L(w),
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here the bilinear form B : HZ(Q) x H3(Q) — R defined by

B(u,w) :,u/ uwdaz—f—/ AuAwdz
Q Q

and the linear form L : HZ(Q2) — R by

L(w) = /(fz( ) + pfi(z)) wdr — / /OO £2+5+1)d§d

—bTe_TAl/w/ €% fy(x,0)dodz.
Q Jo

It is straightforward to verify that B is coercive and continous and L is
continous. So, applying the Lax-Milgram theorem, we deduce that for all
w € HZ(Q) problem admits a unique solution u € HZ(Q). Applying
the classical eliptic regularity, it follows from that u € HZ(Q). Using
the second equation of and Green’s formula, we have

—+00

/Q [(1 +a)u+ A%u+b d(EN(E)dE — fol w =10, w € H ().

Hence,
+oo
(+avutauts [ o@mOn(Edt = falx) € L2(@).
Using the third equation of , we get
+oo
L[ @+ @+ 0@ -z mm© -] wds =0, we Hy(@),
Hence,

¢ (2,6) + (62 +8) ¢ (,6) — 2 (2, 1)n (&) = f3(z,€) € L* (2 x (—00, +0)) .
Therefore,

UeD(A).
Consequently, I + A is an onto operator.

To conclude, we show that the mapping J : H — H is locally Lipschitz.
For any U € H, we observe that

J0) =g @) =llouu -7
| I

2
- Hu |72 — a|a|HH .
It is easily to verify that
2 ~12
Joetute? — 2" < € hu— 2y 0

Hence, J satisfies the local Lipschitz condition. O
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4. GLOBAL EXISTENCE

In this section, we establish the global existence of solutions. To begin,
we introduce the following two functionals

+o0
I(t) = b /Q / 16 (2,€,8) 2 déda + || Aul?

(22) L
_ q 2
fully 57 [ [l ) dpo
and
b —+o00 9 1 5
J(t) =5 |p(z, &, )|° dédx + = || Aul|

1 1
=l s [ [ latep 0 dpda.
q QJo

By the definition J(¢) and E(t), we have

1
(24 B(t) = 5 lull? + J0)
Lemma 5. Suppose that and hold. Then, for Uy € H satisfying
a—2

B9 _2q 2
(25) 3= (" ((H)E(O)) <1,

1(0) > 0.
Then

I(t)>0, forallt>D0.

Proof. Since I(0) > 0, then there exists (by continuity of w(t)) 7% < T' such
that

I(t)>0, forallte[0,T"].
By and , we have

29 g i 2 2
Zrw=b [ [ eeenlad+ =510

26 2(qg—1 !
20 +aal? + 22T g )P s
q—2 aJo
> || Aul®.
Thus, by @D, and , we deduce that
2q 2q
Au(t)|* < E(t) < E(0
IBu ) < HHEw@) < 5B )
for all ¢ € [0, T*]. Thanks to Sobolev-Poincare inequality and , we have
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lullg < CZ | Aul3

q—2

e 24 z ull?
<ot 2E0) T a

< |Au||?, forall t € [0,T7%].

After this
—+o00
wzgé/ 16 (2, &,0)[ dede + | Aul?

1
— [Jullg + ST/ / |z (2, p, t)|* dpda > 0, for all t € [0,T*].
QJo

By iterating this process and utilizing the inequality

q—2

i 0 (2E0) <1

we can take T* = T. O

Theorem 2. Suppose that and hold, and Uy € D(A) satisfying ([25)).
Then the solution of system 1s global and bounded.

Proof. Tt suffices to show that |ju||* + ||Au/|* is bounded independently of
t. We get from and
1
E(0)> E(t) = llul® + J ()
1 2, (¢—2)
>
Z 5 e ]|” + 2%

Therefore,
luel® + [[Au|® < & E(0),

where &7 is a positive constant, which depends only on the parameter g. [

5. DECAY

In this part, we prove the decay estimates of energy to the problem .
For N > 0 and ¢; > 0, we define a perturbed modified energy by

L (t) =NFE (t) + a1 K4 (t) + Ko (t)

where
+oo
(27)
_T// TPz (x, p, t)|? dpde,
and

t - 1 "
M(xaf,t)Z/O ¢(m,f,a)d0—£2n_i(_€[)3/0 fo(:U’_pT)dp—i_W'
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Lemma 6. Let (u, @, z) be reqular solution of the problem , then
“+oo
L[ @rpowennwends

+o00
- / @) [ s

-, / rot) [ w©0te. € dedpi
[ [ e npacan

Proof. Using the second equation in , we have

(52 + 6) ¢($a§7t) = Z(.%', 17t)77(§) - (bt ([B,{,t)
=n() [z (z,1,t) = 2 (2,0,1)]
+ug (x7t)77(§) — ¢t (.’L‘,f,t) :

Observe that

1 1

1 [Catptdo= [z @ptdp =2 (o0 - (.00,

0 0

After this
1
(€4 8) 6 (2,6,0) = —m1 (¢ /0 (2,p, 1
e (2,8) 1 () — 1 (2,€,1).

Integrating the last equation over [0, ¢], we obtain
t 1
| @+mo@enio=—m© [ z@pnd

1
+r0(©) [ foe=prydp
+u(z, 1) n (&) — uo (z) n(§) — d(,§,¢).
Therefore,

1
(€+8) M @.t) = =m(©) [ z(@pt)dp
Multiplying by ¢ and integrating over 2 x (—oo, +00), we get (28).

(29)
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Lemma 7. Let (u, ¢, z) be reqular solution of the problem , then
400 9
'A/)(§+®Mﬂ%&ﬂdww

1
(30) <:372AOJ/L/“|z<wﬁztn2dpdm4-3AocfusuHQ
QJ0

3 teo 9
+B/Q/_oo ¢ (x,&, )| dédu.

Proof. Invoking , to obtain

'/Q/_:O (€2 + 8) M (2,€, 1) déda

2

<72A0/ </1 (z, p, )) do

2 1 (2,6, 1)
%%mn+// o 6.6 0F 1oy,

g (w, &, t) u (, t) n (€)]
+2// &e+p déde

mw/ 2 (@, 1) dp

+27//+oo‘¢a:§t ngoﬁ z, p,t dp‘ seds.

Next, we aim to bound the right-hand side of equation . Applying
Holder’s inequality gives us

(32) jﬁlz<m,p,w(u)s (jﬁlv<xﬁztﬂ2dp)é

To estimate the fourth and fifth terms, we apply Young’s inequality, obtain-

ing
o g, & tu (. )0 (§))]
I

Ag T g (2, &, 1))
<P+ [ [ g

’7'2 1 2 1 2
ms//uu%mmm+uw.
2 JaJo 2

(31)

27‘14() dx

and

),

1
u(x,t)/o z(z,p,t)dp
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For the final term, applying Young’s inequality, along with Lemma 3

yields
+00 ‘(b x,&,t) fO (x,p,t dp‘
O e

2AO// 2 (z, p, t)|? dpda
oy [ )

Consequently, we arrive at

+o0 9
// (€2 + B) M (x,&,1)? déda
QJ—c0

1
<37 [ [l p ) dpde +30 [l

+3//+oo |¢£§f; déda.

/3 B and Poincaré’s inequality, then is estab-

lished. O

Lemma 8. For e small and N large enough, we have

(33) gE(t) < L(t) <2NE(t), forallt>D0.

Proof. Using Young’s inequality and Poincaré’s inequality, we get
L(t) < NE(t)+ %1 el + r/ /1 e~ Pz (x, p,t)|? dpdx

+ 2% a2 +b// (€2 4+ B) |M (2, ,0)[? deda.

Using @ and Lemma we have

1 N
L(t) = 5{N +e1} e |* o lullg

1
+7-{N5+ 387‘51}// |Z(x7p7t)|2 dpdﬂf
2 aJo
1
—1—7’// e |z (x, p,t)|? dpdx
QJo

1
+ = (N +e1C% {1 + 3s}) || Au|?

<N+3€1>//+OO ¢ (x,&,1)| déda.
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So, by using , we have
1 N
2NE (1) = L(t) > 5 {N —ex} fue* + ~1®

—1)sN 3
+T{(qq)8_e—f ml}// |z (2, p, t)|? dpda

1 —2)N
+ 5 {(qq) - 6103 {1 + 38}} ||Au||2

+12){(q— )N 351}//+°° 6 (2, €,0)[2 dede.

Similarly, we get

N 1N N
L) -5 B0 25 {5 - }uutn g0
—1) 1
e { U er BT [ )P apa
2 0 Jo
1
2{ —5102{1+3s}} | Aul?
+2{ 381}// 16 (2, &, 1)|? deda.
By fixing &1 small and N large enough, we obtain L(t) — FE(t) > 0 and
2NE(t) — L(t) > 0. The proof is completed. O

Lemma 9. Suppose that and @ hold. Then, the functional K1 defined
by satisfies

K0 = Ol = 180 = [ [ 6 w60 deda
b oo
(34) w1 [ ] @+a)lowsnr s

1
w72 [ [z Gop, 0 dpda + Jull,

for some positive constant C1.

Proof. A direct differentiation of K, using Lemma [6] gives

+00
K (8) = [luel? + /Q wtgedz + b /Q / (€24 8) 6 (a.6.6) M (2,£, 1) déda

1 400
_ 2 2
= Jluell? = | Auf? - br / / 2@, p,1) /ﬂ /_ 00L& tdedpds
+”UH —// (z,&, t! dfdw—ag/ﬂutudx.
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Thanks to Young’s inequality and Lemma 3, we obtain

K7 (8) < (14 mas) [Ju])® - <1 _ ajf) 1A
b +oo
*4/9/_00 (6% + B) ¢ (,&, 1) déda

1
w7 [z ) dpdo + ul

— b/Q /_:O | (2, &,1)|? deda.

By choosing n; = a22C 2 then is established. O

Lemma 10. Assume that (1) and @ hold. Then the functional Ko and
using the third equation in (5)), we have

1
(35) Kj(t) < —TCT// |2(z, p, t)|? dpda + [Juelld-
QJo

Proof. By differentiating K5 with respect to time and applying the third
equation from reference ()), we obtain

1
Ké(t)Z—QT/Q/O e Pz (x,p,t) z (v, p, t) dpdx
1
= _2/ / e Pz (.%',p,t) Zp (.%',,O,t) dpdw
QJo
1
d - 2
=— — |e77? t)|°| dpd
/Q/O a0 [6 |2 (z, p, )\] pdzx
1
—7'// e~ |2(x, p,t)|? dpda:
QJo
1
= —T// e |z (z, p,t)|? dpdx
QJo

_ e_T/Q (@, 1, 0)[% s+ ]|

Then is established. O
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Theorem 3. Assume that and @ hold, and Uy € H satisfying .
Then any solution of satisfies

E(t) < Ke ™™, t>0,
for some positive constants K and w independent of t.
Proof. By using and , we get, for all ¢t > 0,
€
L'(8) < = (NC = Crer = 1) [luelly — 5 | Aul”

+o0
e [[ull? — bey /Q / 16 (€, 8) 2 dedx

0 (-2 [ [T @+ m e i

1
_7(6_7—57'51)// |z (z, p, )| dpda.
aJo

At this stage, we select &1 sufficiently small to ensure that
e T —sTe1 > 0,
and subsequently choose N large enough to satisfy the condition

Cie1 +1 9%
C ) 1 (-

Consequently, from the above, we deduce that there exist a positive constant
m such that becomes

L'(t) < —mE(t), for all t > 0.
By using , we have
(37) L'(t) < —wL(t), forallt>0.
A simple integration of over (0,t) leads to
L(t) < L(0)e ™, t>0.

N>max{

As L(t) and E(t) are equivalent, we have
E(t) <ke ™, t>0. O

6. BLow uP

In this part, we prove the blow up of the solution of problem . Let
(u, ¢, z) be solution of (5)) and define

_ 1 1, o b too 2
=IO g L[ wetasop s

1 1
g l8u st [ [ st p0) 2 dpd
2 aJo



142 EXISTENCE, DECAY AND BLOW UP

Lemma 11. Assume that @ holds. Then there exists a positive constant
Cy > 1, depending on Q only, such that

l
ey < o [l + 1 Au)?]
for any uw € HY(Q) and 2 <1 < q.

Proof. If |jul|, < 1, then HuHé < Hqu < C,||Aul* by Sobolev embedding
theorems.
If |lufl, > 1, then [|ull} < [ju]|¢. This leads to the final result. 0

Theorem 4. Suppose the hypotheses of Theorem[]] are satisfied. Addition-
ally, assume that
E(0) <0.

Then the solution of system blows up in finite time.
Proof. From we get

+o00
@) HO=-F0zg [ [ (@8l s,

hence

1
(40) 0<H()<H({) < p [ullg -
We then define

€
(41) o) = 110 +2 [ wundo -+ 22 ul?.
for € > 0 small to be chosen later and
q— 2

42 0 —
(42) ST

By taking a derivative of (41) and using equation (), we get
Pl(t) = (1= HTH'(t) + e |lu|” — ¢ IIAUH

43 00
(43) - ba/ /+ ¢(z, &, t)dsdz + ¢ ||ul|7 .

Using Young’s inequality, we obtain for § > 0,

- /Q uf jn(swmt)dfdx

1 +oo
S o A B G LCR

which yields, by substitution in ,
¢'(t) > (1 =) HVH'(t) + & Jue® — || Aul|* = ¢ [|ul®

+00
- Zfs/g/_ (€ +8) 16 (2. & D) déda + e |Jull§.
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Using , we have

)= [ HT = S H )

(44) 2 2 2
e el = 1 Aul® = dse full® + e lull?

Therefore by taking d so that % = kH~7(t), for large k to be specified later
and substituting in , we arrive at

(1) 2 [(1 =) — k] H™7 () H'(t) + & [|ue]*
s€
—el|Aull? = - H(8) fully + € Jullf.

2k
Consequently, using , we have for some 0 < r <1

(1) > [(1— ) — ekl B (1) + T2 ) 2

ql—r)—2 se
W=D =2 Aul? = 5106l + e

a1 - e + T /Q / :o 6(2,,1)[? deda

+e€

1
+£q(1—7°)37// |z(x, p,t)|* dpda.
QJOo

By exploiting and the inequality |lul| < Cy ||ul[,, we obtain
1 Y
2 2 2
HO() Jull? < (q) ull < O |2

Exploiting , we have
2<qgy+2<q.
So, Lemma [T1] yields

(16) H() [ull” < Ca 1 Au]* + ullg] -
Inserting in , we obtain
_ 1—r)4+2
F(1)2 (1) - ekl HOOH' (D) + 2D 2 2
q(l—r)—2_C4s 9 _% q
b [ R R R N

—p +o0
—i—q(l—r)eH(t)—I—aq(lz)b/Q/_oo ) (2,&,1)|? deda

+e€

1
+eq(l—r) 87'/ / |z(x, p,t)|* dpda.
0 Jo
At this stage, we select a sufficiently small value for r, so that

g1—r)—2>0
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and a sufficiently large value for k so that the following conditions hold

Cys qg(1—r)—2 Cys
e R

Given fixed values of r and k, we choose a sufficiently small € such that

> 0.

(1—7~)—ck >0, H(O)+6/uou1dm>0.
Q

So, becomes, for some C5 > 0

'(t) = Cs [H(t) + el + [ Au* + flullg

o 1
+b/Q/_; |¢(x’fvt)|2d§dx+37/g/0 2 (z, p,t)|? dpda

o(t) 2 ¢(0) >0, ¢t=>0.

Conversely, applying Holder’s inequality together with the embedding in-
equality L [lul| < Cy [|ul[,, we have

/WWSMMH
Q

< G lullg [l -

and

By applying Young’s inequality alongside Lemma it follows that

_1
R ! 2
. ([ wuer) ™ < o [l + sl

2 2
< Cr [llwall® + 1 Aw) + ull?]

where C and C7 are positive constants and 2 <[ = ﬁ < q. Therefore,

H@%%(éUWMQIu]

< Cy [H(®) + lludl® + Al + Jlulld] , ¢ >0,

1 1

pr(t) <27

(49)

where Cg is a positive constant. Combining and , we arrive at
1

(50) ¢'(t) = Cop™(t), t=0.

A simple integration of over (0,t), we get

1
P77 (0) — 12 Col

o(t) >
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So, ¢(t) blows up in time

1 _
T<T = !
Cove1=7(0)
The proof is completed. O
CONCLUSION

In recent years, considerable attention has been given to the wave equa-
tion with fractional time delays. However, to the best of our knowledge, no
studies have addressed the existence, decay, and blow-up of solutions for the
Petrovsky equation incorporating a fractional time delay. In this paper, un-
der appropriate assumptions, we establish results concerning the existence,
decay, and blow-up of solutions within a bounded domain.
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